EXECUTIVE SUMMARY

ESTABLISHMENT OF 250 KLPD GRAIN BASED DISTILLERY TO MANUFACTURE 125 KLPD ETHANOL AND 125 KLPD EXTRA NEUTRAL ALCOHOL (ENA)

AT

USROLI, TAL. KHALAPUR, DIST. RAIGAD MAHARASHTRA,

BY

M/S. ROCKING BOMBAY BEVERAGES PRIVATE LIMITED (RBBPL) PROPOSAL FOR

ENVIRONMENT CLEARANCE

(Industry falls under 5(g) 'A' Category as per the EIA Notification, 2006 and amendments thereof

Area: 13.4 Acres Cost of the Establishment: Rs. 209.94 Cr. Tors Granted: F. No. IA-J-11011/90/2022-IA-II(I), dated- 23rd March 2022

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 PROJECT LOCATION	1
2.0 PROJECT DESCRIPTION	2
2.1 RESOURCE REQUIREMENT AND INFRASTRUCTURE FACILITIES	2
3. 0 BASELINE ENVIRONMENTAL STATUS	4
3.1 AIR ENVIRONMENT	4
3.2 WATER ENVIRONMENT	8
3.3 SOIL ENVIRONMENT	15
3.4 NOISE ENVIRONMENT	18
3.5 LAND USE/LAND COVER OF THE STUDY AREA	20
4.0 IDENTIFICATION, PREDICTION AND MITIGATION MEASURES	21
5.0 ANALYSIS OF ALTERNATIVE (TECHNOLOGY AND SITE)	21
ANALYSIS OF ALTERNATIVE SITE	21
6.0 ENVIRONMENT MONITORING PROGRAMME	22
7.0 ADDITIONAL STUDIES	23
7.1: RISK ASSESSMENT	23
8.0 BUDGETARY PROVISIONS TOWARDS ENVIRONMENTAL MANAGEMENT PLAN	24
9.0 GREENBELT DEVELOPMENT PLAN	25
10.0 CORPORATE ENVIRONMENT RESPONSIBILITY PLAN	25
11.0 CONCLUSIONS	25

LIST OF TABLES

Table-1 Configuration of the proposed unit
Table2 Salient features of the project site
Table3 Products manufacturing quantities 2
Table4 Raw material requirement and its source for distillery unit
Table -5 Land-use breakup 3
Table6 Water consumption details for grains as raw material
Table7 Wastewater generation details for raw material 1
Table8 Treated effluent recycled from ZLD System
Table9 Net freshwater requirement for raw material for industrial purpose
Table10 Details of boilers and its APC equipment
Table11 Details of non-hazardous waste generated and its disposal2
Table12 Details of hazardous waste generated and its disposal
Table13 Receptor summary
Table14 Ambient air quality monitoring results
Table15Details of the incremental concentrations due to proposed establishment
Table16 Details of the ground water quality monitoring sampling locations
Table -17Groundwater analysis report within 10 km radius of the study area
Table -18 Details of surface water quality monitoring locations 12
Table -19 Surface water analysis report within 10 km radius of the study area
Table20 Water Analysis Results
Table-21 Details of the soil sampling locations 15
Table-22 Soil Analysis report within 10 km radius of the study area
Table -23 Details of noise quality monitoring locations 18
Table24 Noise levels of the study area 19
Table 25 Land use/ Land cover areas in km2 around 10 km radius for project site
Table26 Environment management programme
Table-27 EMP Budget

LIST OF FIGURES

Figure 1 Material balance flow sheet for proposed 250 KLPD Distillery	1
Figure 2 Windrose diagram for the study area (blowing from)	4
Figure 3 10 km. radius study area map indicating Ambient air quality monitoring locations	5
Figure 4 10 km. radius study area map indicating groundwater sampling location	9
Figure 5 10 km. radius study area map indicating surface water sampling location	12
Figure 6 10 km. radius study area map indicating soil sampling location	16
Figure 7 10 km. radius study area map indicating noise quality sampling location	19
Figure 8 Pie chart of LULC classes around 10 km radius of Project site.	20

EXECUTIVE SUMMARY

1.0 INTRODUCTION

M/s. Rocking Bombay Beverages Pvt. Ltd is a Company registered in the State of Maharashtra under the Companies Act, 2013 Vide F. No. U15235MH2020PTC342217 Dated 19.06.2020, having its registered office at Mangesh Industrial Estate, Nahur Village Road, Nahur W, Bhadup Mumbai, Maharashtra State. The industry is planning to establish 250 KLPD Grain based distillery to manufacture 125 KLPD Ethanol and 125 KLPD Extra Neutral Alcohol (ENA) at Usroli Village, Taluka Khalapur, District Raigad, Maharashtra State- 410202.

The proposed project will have 125 KLPD Ethanol Plant and 125 KLPD ENA Plant based on grains as raw material. The raw material will be sourced from open market.

The ethanol produced will be sent to petroleum industries to contribute to the Ethanol Blended with petrol programme of Government of India. The ENA will be utilized for edible purposes. The CO2 generated will be scrubbed and bottled. The configuration of product after proposed establishment of 250 KLPD Distillery is as below

Sr. No.	Products and By-products	Quantity
Α	Products	
1	Ethanol	125 KLPD
2.	Extra Neutral Alcohol	125 KLPD
3.	Power	1*6 MW TG Set
В	By-Products	
1	CO ₂	239.13 TPD
2.	Fusel Oil	610 KLPA
3.	DDGS (Dry)	47916 MTPA

 Table Error! No text of specified style in document.-1 Configuration of the proposed unit

The command area is rich in grains and has excellent irrigation facilities. Considering the grains availability in the command area the industry proposes to establish 250 KLPD distillery.

The steam and power requirement for the proposed plant will met through proposed 1* 50 TPH 480 deg C with 67 Kg/Cm2: (Rice husk + Coal fired) connected to 1*6 MW TG Set.

1.1 PROJECT LOCATION

The salient features of the project site are:

Table Error! No text of specified style in document.-2 Salient features of the project site

Sr. No.	Features	Description	Direction wrt site
1.	latitude	18°44'37.87"N	
2.	Longitude	73°15'39.70"E	
3.	Elevation above MSL	90 meters	
4.	Nearest City/Town	Khalapur ~ 9.5 Km	NWW
		Raigad~ 27 Km	SEE
F	Negarat VIII.	Usroli ~ 0.5 Km	W
Э.	Nearest Village	Khanavi ~ 1.0 Km	E
6.	Road	SH-92 (Nagothana- Khopoli) ~ 3km	SE

Sr. No.	Features	Description	Direction wrt site
		Magva pazar talav ~ 0.5Km	SW
7.	Nearest water body	Patalganga River ~ 3 Km	W
		Hetavane Dam ~ 6.5 Km	SW
Q	Pailway Station	Khopoli Railway Station~ 9.5 Km	NE
0.	Kallway Station	Karjat Junction ~ 19 Km	NEE
9.	Airport	Navi Mumbai Airport ~ 36 Km	NWW
10.	Protected Area	None within 10 Km	
11.	Reserved Forests	None within 10 Km	
12.	Wildlife Sanctuary	None within 10 Km	
13.	Archeological site	None within 10 km	
14.	State boundary	None within 10 km	
15.	Defense installations	None within 10 km	
16.	Average Rainfall	2200 – 3000 mm	
17.	Seismicity	III	

2.0 PROJECT DESCRIPTION

The details about the maufacturing capacity of the proposed establishment are given in table below

Table Error! No text of specified style in document.-3 Products manufacturing quantities

Sr. No.	Product Name	Unit	Quantity
1	Ethanol	KLPD	125
2	Extra Neutral Alcohol	KLPD	125
3	Power (TG Set)	MW	1*6

2.1 RESOURCE REQUIREMENT AND INFRASTRUCTURE FACILITIES

A) Raw material requirement

The details of the raw material requirement for distillery unit and its source are given in table below. The raw materials and other chemicals are transported to the site through designated vehicles by Pakka Roads.

Table Error! No text of specified style in document.-4 Raw material requirement and its source for

distillery unit					
Sr. No	Item	Quantity	Unit	Source	
1	Grains	551.24	TPD	Open market	
2	Utility Chemicals	250.64	TPD	Open market	
3	Operating Chemicals	125.13	TPD	Open market	
4	Fuel Requirement				
	Coal	240	TPD	Open market	
	Rice Husk	320	TPD	Open market	
	Diesel for DG Sets	225	Ltr/hr	Open market	
Utilities	Utilities				
1	Steam	40-45	TPH	Proposed 50 TPH boiler	
2	Power	4.8	MW	6 MW TG Set Connected to 50TPH Boiler	
3	Water	Industrial-1779.85	TPD	CGWA/ Irrigation department	

Page | 2

Sr. No	Item	Quantity	Unit	Source
		Domestic- 40		
	Man power	249	Nos	Local

B) Land use Details

Details of proposed land utilization pattern within the project site is given in table below

Table Error! No text of specified style in document.-5 Land-use breakup

Sr. No.	Description	Area in Sq. m	Area in Acres	% Area
1	Built Up Area	15641.35	3.87	28.84
2	Area Under Future Expansion	4851.79	1.20	8.95
3	Parking Area	3654.8	0.90	6.74
4	Green Belt Area	18026.54	4.45	33.24
5	Area Under Road	10705	2.65	19.74
6	Area Under Vacant Land/Open Area	1348.39	0.33	2.49
	Total	54227.8761	13.40	100

C) Power requirement

The power requirement of the proposed distillery will be 4.8 MW. It is proposed to have a new turbo alternator of about 6.0 MW capacity. The steam produced in the new 50 TPH boiler shall be used for generating power. The exhaust produced in the new boiler will be used for generating power. The exhaust steam of turbine shall have a pressure of about 3.5 kg/cm2, which will be used for distillery purpose. Power for idle days around 600 KWH will have to be taken from state electricity board.

D) Water requirement-

The water will be sourced from CGWA/ Irrigation department. The detailed water budget is given in below tables.

Figure 1 Material balance flow sheet for proposed 250 KLPD Distillery

Water Aspects-

Table Error! No text of specified style in document.-6 Water consumption details for grains as raw

Sr. No.	Propose	Water consumption (TPD)		
1	Domestic		40	
		Industrial		
1	Process & Slurry and	1583.94		
	fermentation Dilution			
	Additional water for	275		
	fermentation		575	
2	Boiler make up		158	
3	Cooling tower makeup	1802		
4	Washings	80		
	Total	Industrial – 3998.94	Domestic - 40	

material

Table Error! No text of specified style in document.-7 Wastewater generation details for raw material

Sr. No.	Propose	Wastewater Generation (TPD)	Remarks
	Dome	stic	
1	Domestic	32.00	
	Indust	rial	
1	Process		
a	DDGS	136.56	To Cattle Feed
b	Spentlees	721.09	To Process
с	MEE Condensates	1267.17	To CPU
2	Boiler blow down	70.00	To CPU
3	Cooling tower blow down	160.00	To CPU
4	Washings	80.00	To CPU
	Total	2434.82	

Table Error! No text of specified style in document.-8 Treated effluent recycled from ZLD System

Sr. No.	Propose	Wastewater Generation (TPD)	Remarks
1	Treated effluent recycled from CPU	1498	None
2	Spentlees	721.09	To process
	Total	2219.09	

 Table Error! No text of specified style in document.-9 Net freshwater requirement for raw material for industrial purpose

Sr. No.	Propose	Water (TPD)				
	Industrial					
1	Total water consumption (Industrial)	3998.94				
2	Treated effluent recycled from ZLD System	2219.09				
	Net fresh water requirement (Industrial)	1779.85 (7.12 m3/KL of Ethanol)				

E) Wastewater generation and its treatment technology

Distillery unit

Spent wash/thick slop (1403.73 TPD) (approx. 10 % w/w solids) are initially treated in decanters and Wet cake (251.57 TPD) and thin slops (1152.16 TPD) are separated. Thin slops are sent to Multiple Effect Evaporators (MEE) (Concentrated Syrup – 167.51 TPD) up to 30% solids (w/w). Concentrated Syrup is sent to DWGS drier along with wet cake generated from decanters and the output is a dry powder with 90% solids and is known as DDGS (136.56 TPD) and zero liquid discharge is achieved.

Condensates from MEE (984.65 TPD) and Drier (282.52 TPD) totaling to 1267.17 TPD are collected and treated in condensate polishing unit along with other dilute effluent (i. e. cooling tower blow down (160 TPD), Boiler blow down (70 TPD) and Fermenter washings (80 TPD) totaling to 1577.17 TPD)) and recycled back (1498 TPD) as process water or make up water for cooling tower and boiler.

F) Air Emission Management

Table Error! No text of specified style in document.-10 Details of boilers and its APC equipment

Sr. No.	Stack Attached to	Type of Fuel	Minimum requirement of stack height	APC Equipment
1	1*50 TPH boiler	Coal Rice Husk	58.87* 46.84*	ESP and stack of 60 meters height will be provided
2	2*750 kVA DG Set	HSD	6.5 m	Appropriate stack height with Acoustic enclosure

G) Solid waste Management

a) Non-Hazardous solid wastes details

 Table Error! No text of specified style in document.-11 Details of non-hazardous waste generated and its disposal

Sr. No.	Description of waste	Quantity (TPD)	Mode of Collection and Disposal						
	Boiler Ash (TPD)								
1	Coal as fuel OR	24	Sold to brick manufacturors						
	Rice husk as fuel	64	Sold to blick manufacturers						
2	CPU Sludge (TPA)	164	Disposed in composting						
Other Solid Wastes									
Sr. No.	Description of waste	Quantity (Kg/M)	Mode of Collection and Disposal						
1.	Paper waste	40	Manually collected and stored in a designated						
2.	Plastic waste	35	area and sold to scrap vendors						
3.	Municipal Solid waste								
	Non-Biodegradable	1120	Manually collected and sold to scrap vendors						
	Bio-degradable	750	Used in Composting						

b. Hazardous Waste

 Table Error! No text of specified style in document.-12 Details of hazardous waste generated and its disposal

Sr. No.	Category	Description	Quantity	Disposal
1	5.1	Used Oil	3500 LPA	Collected in leak proof container stored at designated storage area and sent to CHWTSDF for disposal.
2	33.1	Empty barrels/ containers	10 Nos	Sold to authorized recycler

3. 0 BASELINE ENVIRONMENTAL STATUS 3.1 AIR ENVIRONMENT

3.1.1 METEOROLOGICAL CHARACTERISTICS OF THE STUDY AREA

Figure 2 Windrose diagram for the study area (blowing from)

From **Figure 2** it can be seen that the Average wind speed of the study period is 2.3 m/s. and the predominant wind direction is from West to East direction. This has been used in selecting the receptors. A maximum number of receptors are in East direction, which is opposite to predominant wind direction.

Sr. No.	Symbol	Description	Latitude	Longitude
	S-1	Stack-1	18°44'36.43"N	73°15'41.50"E
1	AAQ-1	Near main gate	18°44'42.82"N	73°15'38.93"E
2	AAQ-2	Usroli	18°44'48.90"N	73°15'20.42"E
3	AAQ-3	Near Khambewadi	18°44'30.14"N	73°17'14.02"E
4	AAQ-4	Near Ujloli	18°43'29.85"N	73°15'35.88"E
5	AAQ-5	Near Sangdewadi	18°45'44.53"N	73°17'7.64"E
6	AAQ-6	Near Ransai	18°46'29.34"N	73°12'23.94"E
7	AAQ-7	Near Chavni	18°43'19.25"N	73°20'2.46"E
8	AAQ-8	Near Nada	18°43'19.73"N	73°13'5.32"E

Table Error! No text of specified style in document.-13 Receptor summary

Figure 3 10 km. radius study area map indicating Ambient air quality monitoring locations

C	Description	D			С	oncentrat	ion	
Sr.	Description	Keceptor/		PM 10	PM 2.5	SO_2	NO _X	СО
INO.	of Receptor	vmage		μg/m ³	µg/m ³	µg/m ³	µg/m ³	mg/m ³
			Minimum	55.4	20.0	11.4	21.3	0.2
1		Near main	Maximum	69.0	30.0	20.5	32.6	0.7
1	AAQ -1	gate	Average	61.5	25.03	16.9	30.15	0.41
			Percentile 98%	68.3	29.7	20.1	32.5	0.65
		Usroli	Minimum	58.1	19.0	14.7	20.8	0.2
2			Maximum	63.5	25.0	21.1	31.7	0.7
2 AAQ -2	AAQ -2		Average	61.3	21.7	18.6	28.5	0.39
			Percentile 98%	63.35	24.8	20.85	31.5	0.65
			Minimum	52.6	19.4	14.4	23.3	0.2
3	AAO 3	Near	Maximum	66.7	28.8	21.7	32.6	0.8
5	AAQ -3	Khambewadi	Average	59.9	21.9	18.8	29.2	0.47
			Percentile 98%	65.5	26.95	21.65	32.15	0.75
4 AAQ			Minimum	52.1	17.0	14.5	24.0	0.2
		Neer Uileli	Maximum	65.4	25.4	22.7	32.8	0.7
	AAQ -4	Near Offon	Average	58.3	19.8	19.2	29.6	0.46
			Percentile 98%	64.0	24.0	22.5	32.8	0.7
		Near	Minimum	52.0	17.5	14.0	25.0	0.3
5	110.5	Sangdewadi	Maximum	57.4	22.3	21.8	32.6	0.7
5	AAQ-3		Average	55.0	19.8	18.6	29.6	0.5
			Percentile 98%	57.4	22.1	21.65	32.5	0.7
			Minimum	56.0	18.1	15.0	25.9	0.3
6	110 6	Noor Dongoi	Maximum	62.6	23.4	21.7	32.1	0.7
0	AAQ -0	Ineal Kalisai	Average	59.9	21.8	19.4	29.6	0.45
			Percentile 98%	62.55	23.3	21.65	32.05	0.65
			Minimum	54.9	18.3	17.4	23.1	0.2
7		Neer Chevrei	Maximum	61.6	24.2	22.5	32.4	0.7
/	AAQ -7	Near Chavm	Average	58.8	21.3	20.0	28.57	0.42
			Percentile 98%	61.55	24.15	22.2	32.0	0.65
			Minimum	53.0	16.3	16.5	24.3	0.2
0		Noor Nodo	Maximum	62.3	24.3	23.9	33.3	0.7
ð	AAQ -8	inear Inada	Average	58.6	20.4	20.6	29.3	0.43
			Percentile 98%	62.15	23.9	23.6	32.95	0.65

Table Error! No text of specified style in document.-14 Ambient air quality monitoring results

3.1.1 IMPACT ON AIR QUALITY DUE TO PROPOSED ACTIVITY

Sr.		PM10- 24 hour			PM2	PM2.5- 24 hour concentration (μg/m3)			SO ₂ - 24 hour concentration (µg/m3)			NOx- 24 hour		
No	Decentor/Villago	conce	concentration (µg/m3)									concentration (µg/m3)		
140	No Receptor/vinage	Backg	Increm	T-4-1	Backgro	Increm	T-4-1	Backgr	Increm	T-4-1	Backg	Incre	T-4-1	
•		round	ental	Total	und	ental	Total	ound	ental	lotai	round	mental	Total	
1	Near main gate	69.0	0.0	69.00	30.0	0.0	30.00	20.5	0.0	20.50	32.6	0.0	32.60	
2	Usroli	63.5	0.0	63.50	25.0	0.0	25.00	21.1	0.001	21.10	31.7	0.001	31.70	
3	Near Khambewadi	66.4	0.011	66.41	28.8	.07	28.87	21.7	0.017	21.72	32.6	0.016	32.62	
4	Near Ujloli	65.4	1.154	66.55	25.4	0.769	26.17	22.7	1.89	24.59	32.8	1.772	34.57	
5	Near Sangdewadi	57.4	0.016	57.42	22.3	0.01	22.31	21.8	0.025	21.83	32.6	0.024	32.62	
6	Near Ransai	62.6	0.049	62.65	23.4	0.033	23.43	21.7	0.081	21.78	32.1	0.075	32.18	
7	Near Chavni	61.6	0.039	61.64	24.2	0.026	24.23	22.5	0.064	22.56	32.4	0.06	32.46	
8	Near Nada	62.3	1.482	63.78	24.3	0.988	25.29	23.9	2.4271	26.33	33.3	2.275	35.58	

Table-Error! No text of specified style in document.-15Details of the incremental concentrations due to proposed establishment

From the results, it can say that,

- At the selected 8 receptor locations, surrounded in 10 km radius around Rocking Bombay Beverages Pvt. Ltd. (RBBPL), Usroli, Taluka Khalapur, District Raigad, GLCs are well within the limits of AAQS.
- Under the working conditions of 1*50 TPH boiler, $PM_{10}GLCs$ at all the 8 receptor locations are in the range of 57.42 µg/m3 to 69.80 µg/m3 which are within the limits of AAQS.
- Similarly, $PM_{2.5}$ GLCs for those receptors are in the range of 22.31 µg/m3to 30.00 µg/m3 which is within the limits of AAQS.
- For SO₂, GLCs are in the range of 20.50 μ g/m3 to 26.33 μ g/m3which is within the limits of AAQS.
- NO_x GLCs are in the range of $31.70 \,\mu\text{g/m3to} 35.58 \,\mu\text{g/m3}$ which is within the limits of AAQS.

It can be inferred that there shall not be any adverse effect on Ambient Air Quality due to the proposed establishment.

3.2 WATER ENVIRONMENT

The unit is located at Usroli, Taluka Khalapur, District Raigad, Maharashtra. Majority of the study area (10 km around site) is under agriculture land use. The industry is lifting fresh water from CGWA/ Irrigation department. The necessary permissions will be obtained.

Patalganaga River, Hetavane Dam and Magva pazar talav are main source of water for agriculture use. Patalganaga River is flowing at 3.0 km towards West from the project site. Groundwater is used as an alternate source in surrounding villages for domestic and drinking purposes. Therefore, it is important to assess the existing baseline status of both ground water quality and surface water quality within the study area.

3.2.1 GROUND WATER

 Table Error! No text of specified style in document.-16 Details of the ground water quality monitoring sampling locations

Sr. No.	Symbol	Description	Latitude	Longitude
1	GW-1	Well Near Usroli	18°44'53.61"N	73°15'12.28"E
2	GW -2	Well Near Gorthan Khurd	18°46'4.54"N	73°14'54.74"E
3	GW -3	Borewell Near Sangdewadi	18°45'40.23"N	73°17'12.92"E
4	GW -4	Well Near Khambewadi	18°44'24.33"N	73°17'25.61"E
5	GW -5	Borewell Near Tuksai	18°42'41.65"N	73°18'5.68"E
6	GW -6	Borewell Near Dahivati Tarf Boreti	18°47'31.92"N	73°17'30.82"E
7	GW -7	Well Near Kharivali	18°44'43.76"N	73°14'25.49"E
8	GW -8	Borewell Near Ransai	18°46'18.67"N	73°12'32.53"E

Figure 4 10 km. radius study area map indicating groundwater sampling location

Sn						Res	ults				Desirable	Permissible
No.	Parameters	Unit	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8	IS 105 Star	500:2012 ndards
1	Temperature	۰C	22	24	24	24	24	25	25	25	Not S	pecified
2	Turbidity	NTU	<1	<1	<1	<1	<1	<1	<1	<1	1	5
3	Salinity	ppt	0.035	0.052	0.071	0.040	0.084	0.074	0.066	0.040	Not S	pecified
4	pH at 25°C		7.68	7.43	7.72	7.6	7.8	7.6	7.5	7.68	6.5-8.5	No Relaxation
5	EC at 25°C	µS/cm	495	430	545	420	458	480	480	497	Not S	pecified
6	Total Dissolved Solids (TDS)	mg/L	325	285	354	273	298	312	314	323	500	2000
7	Total Hardness (as CaCO ₃)	mg/L	192	183	216	180	173	192	185	200	200	600
8	Total Alkalinity (as CaCO ₃)	mg/L	180	154	201	160	152	162	168	175	200	600
9	Sulphate (as SO ₄)	mg/L	26.58	21.3	22.6	21.7	23.5	28.6	22.4	24.5	200	400
10	Chloride (as Cl)	mg/L	30.58	32.05	36.5	40.6	37.8	35.6	37.8	37.8	250	1000
11	Calcium (as Ca)	mg/L	48.05	39.7	45.8	43.3	48.6	45.6	43.2	45.6	75	200
12	Magnesium (as Mg)	mg/L	17.35	20.1	24.3	17.2	12.3	18.6	18.5	20.6	30	100
13	Total Suspended Solids (TSS)	mg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	Not S	pecified
14	Ammonia (as N)	mg/L	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	0.5	No Relaxation
15	Fluoride (as F)	mg/L	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	1-1.5	No Relaxation
16	Iron (as Fe)	mg/L	0.056	0.05	0.23	0.056	0.050	0.045	0.21	0.23	0.3	No Relaxation
17	Nitrate (as NO ₃)	mg/L	<1	<1	<1	<1	<1	<1	<1	<1	45	No Relaxation
18	Nitrogen (as N)	mg/L	< 0.05	<1	<1	<1	<1	<1	<1	<1	No Re	elaxation
19	Nitrite (as NO ₂)	mg/L	20.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	Not S	pecified

Table -17Groundwater	analysis report	within 10 km	radius of the	e study area
Tuble 1/010ulluwater	analysis report		radius or the	study area

Sr						Desirable	Permissible					
No.	Parameters	Unit	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8	IS 105 Star	500:2012 ndards
20	Sodium (as Na)	mg/L	20.0	15	23.0	22.0	22.0	20.0	23.0	19.0	Not S	pecified
21	Phosphate (as PO ₄)	mg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.05	< 0.2	< 0.2	Not S	pecified
22	Total Chromium (as Cr)	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	No Relaxation
23	Chromium (as Cr+6)	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.05	0.10	No Relaxation
24	Nickel (as Ni)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.003	< 0.02	< 0.02	0.02	No Relaxation
25	Cadmium (as Cd)	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.001	< 0.003	< 0.003	0.003	No Relaxation
26	Mercury (as Hg)	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.01	< 0.001	< 0.001	0.001	No Relaxation
27	Arsenic (as As)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	0.01	0.05
28	Cyanide (as CN)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	0.05	No Relaxation
29	Lead (as Pb)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.65	< 0.01	< 0.01	0.01	No Relaxation
30	Zinc (as Zn)	mg/L	0.83	0.60	0.72	0.83	0.80	< 0.04	0.58	0.61	5	15
31	Copper (as Cu)	mg/L	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.05	< 0.04	< 0.04	0.05	1.5
32	Total Coliform	MPN/ 100ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	No Relaxation	
33	E. coli.	MPN/ 100ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	No Re	elaxation

3.2.2 SURFACE WATER

Sr. No.	Symbol	Description	Latitude	Longitude
1	SW-1	Magva Pazar Talav	18°44'26.75"N	73°15'35.93"E
2	SW -2	Patalganaga River Near Golewadi	18°45'24.25"N	73°17'0.53"E
3	SW -3	Patalganga River near Khanavi	18°44'36.10"N	73°16'37.62"E
4	SW -4	Patalganga River near Khambewadi	18°44'47.92"N	73°17'3.74"E
5	SW -5	Hetavane Dam	18°43'51.96"N	73°11'39.78"E

Table -18 Details of surface water quality monitoring locations

Figure 5 10 km. radius study area map indicating surface water sampling location

Sr.	Deverysteve	T		Results				Desirable	Permissible
No.	Parameters	Unit	SW-1	SW-2	SW-3	SW-4	SW-5	IS 10500:20	12 Standards
1	Temperature	°C	24	22	25	25	25	Not Sp	pecified
2	Turbidity	NTU	<1	<1	<1	<1	<1	1	5
3	Salinity	ppt	0.062	0.048	0.054	0.058	0.040	Not Sp	pecified
4	pH at 25 ^o C		7.42	7.52	7.62	7.71	7.73	6.5-8.5	No Relaxation
5	EC at 25°C	µS/cm	314	334	447	417	431	Not Sp	pecified
6	Total Dissolved Solids (TDS)	mg/L	204	217	291	271	280	500	2000
7	Total Hardness (as CaCO ₃)	mg/L	129	128	191	155	174	200	600
8	Total Alkalinity (as CaCO ₃)	mg/L	100	105	152	145	154	200	600
9	Sulphate (as SO ₄)	mg/L	20.6	20.5	24.6	24.3	18.6	200	400
10	Chloride (as Cl)	mg/L	26.8	31.5	36.8	31.2	35.4	250	1000
11	Calcium (as Ca)	mg/L	25.6	30.5	40.5	34.8	38.6	75	200
12	Magnesium (as Mg)	mg/L	15.8	12.5	21.6	16.3	18.6	30	100
13	Total Suspended Solids (TSS)	mg/L	<5.0	<5.0	<5.0	<5.0	<5.0	Not Sp	pecified
14	Ammonia (as N)	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.5	No Relaxation
15	Fluoride (as F)	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1-1.5	No Relaxation
16	Iron (as Fe)	mg/L	0.32	0.38	0.4	0.35	0.35	0.3	No Relaxation
17	Nitrate (as NO ₃)	mg/L	<1	<1	<1	<1	<1	45	No Relaxation
18	Nitrogen (as N)	mg/L	<1	<1	<1	<1	<1	No Rel	axation
19	Nitrite (as NO ₂)	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	Not Sp	pecified
20	Sodium (as Na)	mg/L	14.0	16.0	14.0	18.0	14.0	Not Sp	pecified
21	Phosphate (as PO ₄)	mg/L	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	Not Specified	
22	Total Chromium (as Cr)	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	No Relaxation
23	Chromium (as Cr+6)	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.10	No Relaxation

Table -19 Surface water analysis report within 10 km radius of the study area

Sr.	Denometens	I Init			Results			Desirable	Permissible
No.	Parameters	Unit	SW-1	SW-2	SW-3	SW-4	SW-5	IS 10500:20	12 Standards
24	Nickel (as Ni)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	No Relaxation
25	Cadmium (as Cd)	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.003	No Relaxation
26	Mercury (as Hg)	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	No Relaxation
27	Arsenic (as As)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.05
28	Cyanide (as CN)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	No Relaxation
29	Lead (as Pb)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	No Relaxation
30	Zinc (as Zn)	mg/L	0.72	0.70	0.68	0.78	0.84	5	15
31	Copper (as Cu)	mg/L	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.05	1.5
32	Dissolved Oxygen (DO)	mg/L	6.7	6.7	6.6	6.4	6.7		
33	Biochemical Oxygen Demand (BOD) at 27°C for 3 days	mg/L	7.0	4.0	4.4	5.0	3.12	Not Sp	pecified
34	Chemical Oxygen Demand (COD)	mg/L	23.4	11.7	12.8	16.2	9.36	Not Sp	pecified
35	Total Coliform	MPN/ 100ml	Absent	Absent	Absent	Absent	30	No Re	laxation
36	E. coli.	MPN/ 100ml	Absent	Absent	Absent	Absent	12	No Re	laxation

Note:

Remark: -Surface water quality is found to be good, which can be directly used for irrigation purpose. However, for drinking purpose, conventional treatment suggested.

C. No	Danamatana	Groun	d water	Surface water		
5Г . NO	No Farameters		Max	Min	Max	
1.	pH	7.43	7.80	7.42	7.73	
2.	Total Dissolved Solids (mg/l)	273	354	204	291	
3.	Total Hardness (mg/l)	173	216	128	191	
4.	Chlorides (mg/l)	30.58	40.60	28.60	36.80	
5.	Fluoride (mg/l)	< 0.1	< 0.1	< 0.1	< 0.1	
6.	Sulphates (mg/l)	23.30	28.60	18.60	24.6	

Summary of the groundwater and surface water quality monitoring results Table Error! No text of specified style in document -20 Water Analysis Pd

14

3.3 SOIL ENVIRONMENT

Table-21 Details of the soil sampling locations

Sr. No.	Symbol	Description	Latitude	Longitude
1	S-1	Project Site	18°44'37.14"N	73°15'38.45"E
2	S-2	Near Usroli	18°44'54.58"N	73°15'8.82"E
3	S-3	Gorthan Khurd	18°46'7.58"N	73°14'54.76"E
4	S-4	Sangdewadi	18°45'44.32"N	73°17'13.18"E
5	S-5	Near Khambewadi	18°44'24.21"N	73°17'27.57"E
6	S-6	Near Tuksai	18°42'44.26"N	73°18'11.58"E
7	S-7	Near Wakrul	18°43'16.27"N	73°13'6.80"E
8	S-8	Near ransai	18°46'22.76"N	73°13'7.14"E

Figure 6 10 km. radius study area map indicating soil sampling location

Sr.	Description	I mit	RESULT							Standard as per Ministry	
No.	Description	Unit	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	of Agriculture 2011
1	Colour	_									Ministry of Agriculture
т.	Colodi		Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown	2011
2.	Grain Size Distribution										Not Specified
		Sand%	17.22	10.23	15.28	16.23	13.56	17.23	15.4	14.3	Not Specified
		Silt%	28.23	30.10	32.48	25.42	28.43	30.43	30.4	32.0	Not Specified
		Clay %	54.25	57.53	50.36	58.35	58.01	52.34	54.2	53.7	Not Specified
3.	Texture Class		Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Not Specified
4.	Bulk Density	gm/cc	1.10	1.18	1.05	1.14	1.23	1.11	1.04	1.15	Not Specified
5.	Permeability	cm/hr	0.64	0.70	0.72	0.60	0.63	0.68	0.68	0.78	Not Specified
6.	Water Holding capacity	%	40.0	42.0	38.0	44.0	43.0	41.0	42.0	38.0	Not Specified
7.	Porosity	%	39.43	21.03	26.90	33.4	23.5	28.3	27.8	21.2	Not Specified
8.	pH (1: Aq Extraction)		6.28	6.62	7.1	6.94	7.12	7.24	6.86	7.34	< 8.5
9.	EC (1: Aq Extraction)	µS/cm	69.0	187.0	213.0	189.3	217.3	224.3	194.3	211.2	0.15 - 0.65
10.	Cation Exchange Capacity	meq/100gm	0.72	0.68	0.76	0.68	0.73	0.70	0.60	0.79	Not Specified
11.	Sodium Absorption Ratio		16.5	18.0	18.5	17.4	18.9	16.3	15.6	17.3	10-18
12.	Nitrogen (N)	Kg/ha	287.12	236.97	303.69	267.3	248.4	298.0	254.3	232.9	280 - 560
13.	Available Phosphorous (P)	Kg/ha	25.0	24.84	23.13	26.3	23.2	21.8	24.7	21.5	10-24.60
14.	Available Potassium	Kg/ha	176.12	183.43	198.25	168.8	176.4	185.8	154.7	164.8	108-280
15.	Organic Carbon	%	0.7	0.6	0.53	0.6	0.5	0.43	0.52	0.45	0.5 - 0.75
16.	Organic Matter	%	1.0	0.94	0.86	0.93	0.89	0.82	0.90	0.82	Not Specified
17.	Total Iron (Fe)	mg/kg	2.91	2.33	2.28	3.14	2.89	3.21	2.67	2.73	Not Specified
18.	Zinc (Zn)	mg/kg	2.80	2.09	2.49	2.35	2.21	2.67	2.13	2.23	Not Specified
19.	Nickel (Ni)	mg/kg	1.12	1.22	1.32	1.23	1.35	1.18	1.18	1.24	Not Specified
20.	Copper (Cu)	mg/kg	0.89	0.94	0.87	0.76	1.12	0.93	0.83	1.02	Not Specified

Table-22 Soil Analysis report within 10 km radius of the study area

Summary of the results

The soil samples were collected at total eight locations within the study area.

- The finding of the study reveals that pH of soil in the area ranged between 6.28 to 7.34which is an indicative of the neutral to slightly alkaline soil.
- The values for Nitrogen was found to be better to more than sufficient at all locations ranging between 232.9 to 303.69 kg/ha.
- The concentration of Phosphorous was found to be less at all the locations ranging between 21.5 to 26.30 kg/ha.
- The concentration of organic carbon was found to be medium to on an average sufficient at all the locations ranging between 0.43 to 0.70%.
- It is important to note that the concentration of potassium was found to be less at all locations ranging between 157.70 to 198.25 kg/ha. This indicates it is required to use potash rich fertilizers for agriculture purposes.

3.4 NOISE ENVIRONMENT

Sr. No.	Symbol	Description	Latitude	Longitude
1	N-1	Near main gate	18°44'42.82"N	73°15'38.93"E
2	N-2	Usroli	18°44'48.90"N	73°15'20.42"E
3	N-3	Near Khambewadi	18°44'30.14"N	73°17'14.02"E
4	N-4	Near Ujloli	18°43'29.85"N	73°15'35.88"E
5	N-5	Near Sangdewadi	18°45'44.53"N	73°17'7.64"E
6	N-6	Near Ransai	18°46'29.34"N	73°12'23.94"E
7	N-7	Near Chavni	18°43'19.25"N	73°20'2.46"E
8	N-8	Near Nada	18°43'19.73"N	73°13'5.32"E

Table -23 Details of noise quality monitoring locations

Figure 7 10 km. radius study area map indicating noise quality sampling location

Sr	T (*		(Leq dB(A	A)) Average	CPCB limit	(Leq dB(A))
No	Location	Category Of Area	Day time	Night time	Day time	Night time
1	Near main gate	Industrial Area	47.7	36.6	75	70
2	Usroli	Residential Area	49.6	36.9	55	45
3	Near Khambewadi	Residential Area	50.6	38.9	55	45
4	Near Ujloli	Residential Area	50.3	37.3	55	45
5	Near Sangdewadi	Residential Area	51.4	39.0	55	45
6	Near Ransai	Residential Area	50.6	39.5	55	45
7	Near Chavni	Residential Area	50.2	39.0	55	45
8	Near Nada	Residential Area	50.7	39.8	55	45

Table Error! No text of specified style in document.-24 Noise levels of the study area

Summary of the results

Daytime Noise Levels (Leq)_{day}

Industrial Zone: The daytime noise level at the Project site was found in the range of 47.7 dB (A), because it's an establishment project having no operational work yet to sarts and which is well below the permissible limit of 75 dB (A).

Residential Zone: The daytime noise levels in all the residential locations were observed to be in the range of 49.60 dB (A) to 51.40 dB (A).

Night time Noise Levels (Leq)night

Industrial Zone: The night time noise level in the Project site was observed in the range of 36.60 dB (A), because it's an establishment project having no operational work yet to sarts and which is well below the permissible limit of 70 dB (A).

Residential Zone: The night time noise levels in all the residential locations were observed to be in the range of 36.9 dB (A) 39.80 dB (A)

The industry shall make all efforts to control the noise levels within the limits by providing acoustic measures and silencer pads etc. all the employees in these work places **shall be** provided with ear plugs / muffs.

Table 25 Land use/ Land cover areas in km2 around 10 km radius for project site Area in km² Sr No. **LULC Class** Area in Ha Percentage 1 13347.47 133.47 41.07 Dense Vegetation 2 29.14 9468.73 94.69 Open Land 3 8127.455 81.27 25.01 Scrub Land 4 204.4375 2.04 0.63 Agriculture 5 3.02 302.0525 0.93 Fallow Land 6 317.59 0.98 Habitation 3.18 7 Waterbodies 79.01 0.79 0.24 8 650.8 6.51 2.00 Reservoirs/Ponds 32497.54 324.98 100.00 **Total Area**

3.5 LAND USE/LAND COVER OF THE STUDY AREA

Figure 8 Pie chart of LULC classes around 10 km radius of Project site.

4.0 IDENTIFICATION, PREDICTION AND MITIGATION MEASURES

The anticipated impacts during construction and operational phase due to the proposed activity on air, water, soil, noise, ecology and biodiversity, and socio-economic environment are assessed and mitigation measures to minimize the impacts on the same are suggested in Chapter 4 in this report.

5.0 ANALYSIS OF ALTERNATIVE (TECHNOLOGY AND SITE)

The technologies for the treatment and safe disposal of spent wash- most polluting element from distilleries and the site selection criteria are discussed in this chapter. This is to understand the available technology options and the option selected by the project proponent. Molasses based distilleries are among the most polluting industries. However, grain-based distilleries are considered as eco-friendly alternative for the production of alcohol. This is because the effluents generated in the process are less polluting in nature and easy to treat as well as dispose. Thus, for this project of Grain Based Distillery, no new or untested technology will be used and will be based on Zero Liquid Discharge. The whole process is based on proven technology i.e., Multi Pressure distillation followed by Multi Effect Evaporation and Dryer.

Analysis of alternative site

The site has very good approachability and road connectivity. The state highway SH-92 (Nagothana-Khopoli) is 3 Km away towards SE from the project site. Village Usroli and Village Khanavi are 0.5 Km and 1.0 Km away from the site respectively. Khalapur is 9.5 Km away towards NWW of the project site which is a tehsil place. District headquarter Raigad is 27 Km away from the site. Patalganaga River is flowing at 3 Km away towards west from the project. Khopoli is a nearest railway station at 9.5 km towards NE of the project site. From all the above factors it can be seen that the site is very well connected by road and rail network.

This Industry has decided to undertake an "Alternative Analysis (AA)" for this project. The various alternatives are (1) Product (2) Raw materials, (3) Technology, Engineering & Hardware, (4) Site, and (5) Project

- Availability of raw material/fuel
- Proximity of grains as a raw material and cost-effective transportation logistics
- Availability of water supply
- The availability of water from the source is adequate to meet the requirement of the proposed distillery establishment. Source of water will be Irrigation Department/CGWA The necessary permissions will be obtained.
- Availability of infrastructural facility

Industrial infrastructural facilities such as roads, transport, security, water, power, administration etc. are available with existing factory. Community facilities such as quarters, medical services, education and training facility etc. are also available at site.

6.0 ENVIRONMENT MONITORING PROGRAMME

Table Error! No text of specified style in document.-26 Environment management programme

SR.	ITEM	DADAMETEDS	FREQUENCY	LOCATION
NO.	I I ENI	PAKAWETEKS	OF MONITORING	LOCATION
1.	AmbientAirqualityatappropriate locationfor PM_{10} , $PM_{2.5}$, SO_{2} , and NO_{x}	PM_{10} , $PM_{2.5}$, SO_{2} , and NO_x	24 hourly, Quarterly	4 Locations 1 @ Upwind and 2@ downwind directions from stack @ 120 ⁰ to each other 1 Near entry
2.	Stationary Emission from Stack PM, SO ₂ , NOx	PM, SO ₂ , NOx	Monthly	1 DG set Stack, 1 Boiler Stack
	Water	Water quality parameters as per 10500:2012	Monthly	Drinking water locations
3.	Waste water quality (treated and Untreated)	pH, BOD, COD, TSS, Flow, TDS etc.	Monthly	STP inlet and outlet CPU inlet and Outlet
4.	Noise	Day and Night levels Equivalent noise level- dB (A)	Quarterly or as often as required	5 Locations Upwind and downwind directions Near boilers and near main gate and CPU
5.	Soil (Qualitative and quantitative testing/analysis to check the soil fertility	pH, Cation Exchange Capacity, Total Nitrogen, Phosphorous, Potassium, moisture, Permeability, Conductivity, Texture & structure, Organic carbon	Quarterly or as often as required	1 near Greenbelt 1 near CPU Composite sample shall be taken at each location
6.	Solidwastegenerationmonitoring/Record Keeping	Manual record keeping	To be updated daily	
7	Greenbelt and plantation monitoring	Type of species shall be decided based on soil &climatic conditions. The number of trees would be 1500 per hectare, however; the number of trees would	Six Monthly	

SR. NO.	ITEM	PARAMETERS	FREQUENCY OF MONITORING	LOCATION
		vary depending on the type of soil		
8	Carbon and Water foot Print Monitoring	Maintain the data of raw materials consumption, steam consumption, vehicle frequency for transport of raw materials, effluent generation, air emissions, hazardous waste generation, and raw material recovery	Daily and Monthly	

7.0 ADDITIONAL STUDIES 7.1: RISK ASSESSMENT

Hazard analysis involves the identification and quantification of the various hazards (unsafe condition) that exist in the plant during both construction and operation phases. On the other hand, risk analysis deals with the identification and quantification of the risk, the plant equipment and Personnel exposed to accidents resulting from the hazards present in the plant. Risk analysis involves the identification and assessment of risks to the population, which is likely to be exposed to as a result of hazards incidence.

This requires an assessment of failure probability, credible accident scenario, vulnerability of population, etc. Much of this information is difficult to get or generate consequently, the risk analysis in present case is confined to worst case and maximum credible accident studies and safety and risk aspect related to sulphitation process, alcohol storage and plant operations. Detailed Quantitative Risk Assessment (QRA) on potentially more hazardous and risky situations have been carried out in details and presented in the report in the later part.

8.0 BUDGETARY PROVISIONS TOWARDS ENVIRONMENTAL MANAGEMENT PLAN

The cost of the proposed project has been estimated at Rs 209.94 Crores which comprises of land and land development, civil and building, plant and machinery, margin money of working capital. Cost for environment management has been estimated as Rs. 3000 Lakhs and 350 Lakhs as a recurring expenditure. The estimated time of completion of project will be one year after the receipt of Environmental Clearance from the respective authority.

Sr. No.	Component	Particulars		Capital investment in Lakhs	Recurring Cost in Lakhs
1	Air	Construction of name	ew stack for boiler	700	60
2	Water	 Distillery CP MEE and Dr WTP DM Plant 	 Distillery CPU. MEE and Drier WTP DM Plant 		170
3	Noise	Acoustic enclosure ear plugs etc.	res, Silencer pads,	80	15
4	Environment monitoring and Management	Monthly Enviror (Per Year) Ambient air monitoring Boiler & DG Set Monitoring Effluent (Distillery CPU) (Treated & Untreated) Glares, Breathing	Imment MonitoringPM10, SO2, NOXPM2.5, SO2, NOXTPM, SO2, NOXpH, COD, BOD, TSS, TDS, Oil & Greaseg Masks, Gloves,	0	10
5	Occupational Health	Boots, Helmets, annual health-me workers, Occu (training, OH cen	Boots, Helmets, Ear Plugs etc. & annual health-medical checkup of workers, Occupational Health (training OH center)		25
6	Greenbelt	Green belt develo	pment activity	25	10
7	Solid and hazardous Waste Management	Solid and hazardous waste management		100	10
8	Rain water harvesting	Rain water harves	sting	30	5
9	Storm water drainage	Storm water dra construction	inage design and	30	5

Table-27	FMP	Rudget
I apre-27	LIVIP	Duugei

Sr. No.	Component	Particulars	Capital investment in Lakhs	Recurring Cost in Lakhs
9	Carbon and Water Foot Print	Maintain the data of raw materials consumption, steam consumption, vehicle frequency for transport of raw materials, effluent generation, air emissions, hazardous waste generation, and raw material recovery		15
10	Solar Power & Energy Conservation	Street lights installation with Solar Systems	60	10
11	Fire and Safety	Fire and Safety Management	50	10
12	Laboratory	Testing and Analysis	15	5
Total Cost (In Lakhs)			3000	350

9.0 GREENBELT DEVELOPMENT PLAN

According to CPCB guidelines, 2000 trees should be available per hectare of land for Greenbelt development. Total 1.793 Hectares of land is reserved for greenbelt development; hence there should be minimum 3586 no. of trees. The required number of trees shall be planted within two years. The industry proposes to plant 1000 to 1500 trees per year in order to increase the greenbelt over and above 33% of the total plot area.

10.0 CORPORATE ENVIRONMENT RESPONSIBILITY PLAN

The capital cost of the proposed establishment project is Rs. 209.94 Crores. The industry has reserved **Rs. 3.1491 Crores** (1.5 % of the cost of the project as per Office Memorandum Vide F. No. 22-65/2017-IA.III Dated 01.05.2018) The amount will be spent on the activities like sanitation and health facilities, in ZP Schools in nearby villages based on the requirement and road repair and maintenance and Solid waste management in nearby villages in consultation with the District Collector.

11.0 CONCLUSIONS

As the industry has provided all the necessary pollution control measures for water, Air and Solid and hazardous waste disposal, the negative impacts on the environment would be minimal/ negligible. The establishment programme would help the farmers to buy their grains produce in time which would help to minimize the loss of weight and yield maximum financial benefits.