1. INTRODUCTION:

Proponent: The project M/s Satyam Petrochemicals is located at 120/A, Wayanchiwadi, At Post Masur, Taluka Karad, District Satara, Maharashtra. The project has been developed to facilitate the production of Ethanol, Ethyl Acetate, Diethyl Phthalate and Power for captive purpose. The company has already obtained the registration as S.S.I from Directorate of Industries, Maharashtra. This project has been granted environmental clearance by the Ministry of Environment and Forests (MOEF), New Delhi, vide letter number F.No. J-1101/69/2010-1A II (I) dated 22nd March 2013. The project has also obtained Consent to Establish (NOC) from Maharashtra Pollution Control Board Consent No: BO/PCI-I/ECI-RD-1520-10/AME/-173 dtd. 29-07-2010. After completion of the project, the project has granted Consent to Operate (CTO) from Maharashtra Pollution Control Board Consent No. BO/MPCB/RO-PN-18005-13/JD (WPC)/RA/CC-13/06150 dated 22/07/2013.

2. ABOUT THE PROJECT:

M/s. Satyam Petrochemicals has decided to expand their existing unit by production of Di Acetone Alcohol (DAA) & Power at plot no 120/A Wayanchiwadi, At Post Masur, Taluka Karad, District Satara, Maharashtra. It is noted that the proposal involves manufacturing of Di acetone Alcohol & Power with production capacity of 2250 Mt /M & 2000 kw respectively. As per the provision of "EIA Notification No. S. O. 1533 (E)" dated 14.09.2006 & subsequent amended the project of M/s. Satyam Petrochemicals comes under schedule 5 (f) Category 'A'. As the industry is located outside the notified MIDC area. Salient features of the Project is given in the below Table no. 1.

Table No.1

Sr. No	Components	Description
1	LOCATION	M/s. Satyam Petrochemicals 120/A, Wanyanchiwadi, At Post Masur Tal: Karad, Dist: Satara 415106 State: Maharashtra.
2	CO-ORDINATES OF THE LOCATION	-Latitude : 17° 25'03.08" N -Longitude : 74° 09'01.00" E -Elevation above Mean Sea Level (meters): 632 meters The industry is surrounded by In South:- Masur village at 2.23 Km (Aerial distance), In North: Kacharewadi village at 3 Km (Aerial distance), In West: Kavathe at 3 Km, In East: Chikali at 4 Km.
3	LOCATION ACCESSIBILITY	-Railway Station – Masur (5Km) from project siteAirport – Kolhapur (100 Kms) from project siteNearest Road- Masur - Koregaon road -Highway – Pune - Banglore National highway No. 4 (8.5 Km) from project site.
4	Type of Industry	Small Scale Manufacturing Unit

		Existing	Proposed	Total		
5	Area	Plot area: 20,000 sq.m Total built up area: 5355 sq.m Green belt: 7000 sq.m	Proposed built up area: 2148 sq.m Green belt area: same area of existing Open area: 5497	20,000 sq.m out of Total built up area: 7503 sq.m Green belt: 7000 sq.m Open space: 5497		
		Open space : 7645 sq.m	sq.m	sq.m		
6	Products		Di Acetone Alcohol 2250 MT/ Month	Di Acetone Alcohol 2250 MT/ Month		
		Ethanol 1800 kl / month		Ethanol 1800 kl / month		
		Ethyl Acetate 4050 kl / month		Ethyl Acetate 4050 kl / month		
		DEP 20 Mt / day		DEP 20 Mt / day		
		Power 750 kw	2000 Kw	2750 Kw		
7	By Products		Mesityl oxide (MO) 810 Kg/day	Mesityl oxide (MO) 810 Kg/day		
8	Water requirement	430 m /day	453 m /day	883 m /day		
9	Power Generation	750 KW	2000 KW	2750 KW		
10	Boiler capacity	Coal/Bagasse fired: 11T Coal/Bagasse fired: 7 T	Coal/Bagasse fired:20 T	Coal/Bagasse fired: 11T Coal/Bagasse fired: 7 T Coal/Bagasse fired:20T		
11	Effluent generation	50.6 CMD	30.8 CMD	81.4 CMD		
12	ETP capacity	200 m ³ /day	Existing ETP will be utilized	200 m ³ /day		
13	Hazardous waste Generation	Spent catalyst:70 kg/M ETP sludge:250 Kg/M	ETP Sludge: 30Kg/M	Spent catalyst:70 kg/M ETP sludge:280 Kg/M		
14	Non hazardous waste generation	Boiler ash : 800 Kg/D	Boiler ash : 880Kg/D	Boiler ash: 1680 Kg/D		

15	Stack height		30 mtr for boiler 10 mtr for D.G set from Ground Level	30 mtr for boiler 10 mtr for D.G set from Ground Level	
16	Man power		28 nos.	14 nos.	42 nos.
17	Fuel requirement	Bagasse	1920 Kg/hr	2100 Kg/hr	4020Kg/hr
		diesel	50 L/hr	50 L/hr	100 L/hr
		Coal	2250 Kg/hr	2500 Kg/hr	4750 Kg/hr
18	Utilities	D.G.Set	2 No. of D.G set of 500 KVA	1 No. of D.G set of 1500 KVA	1 No. of D.G set of 1500KVA 2 No. of D.G set of 500 KVA
19	EMP budget		25 lakh	1.2 Cr.	1.45 Cr.
20	Project cost	-	5.45 Crore	12.50 crore	17.95 crore

3. Justification of Project

Di Acetone Alcohol has multiple end uses in local and international market. Project proponent justify it needs for expansion for narrowing the demand & supply gap. Also the project would lead to addition of foreign exchange as the product as a export potential. Overall the expansion of the unit will be having a positive impact.

4. Baseline Environmental Status: The study area is 10 km radial distance from centre of plant site. All the monitoring has been completed in various locations within the study area during the period of March 2014 – May 2014. The findings of the baseline environmental status on land (topography, soil quality, land use pattern), meteorology (Temperature, Humidity, rainfall, wind speed), air (ambient air quality- PM₁₀, PM_{2.5}, SO₂, NO_X), noise level, ecological environment (flora and fauna), socio economic conditions, are presented in the detail EIA report and interpreted with reference to environment standards

4.1 Ambient Air Quality

Sr. No	Sa	mpling Location (AAQM)	M/s. Satyar	n Petrocl	nemical	
			Direction	Dist. (Km)	Lat	Long
1.	A1	Project Site (Near security gate)	Centre		17°25'05.48" N	74°09'03.27" E
2.	A2	Nigadi village	NE	5.50	17°26'27.30" N	74°11'14.20" E
3.	A3	Belwadi Village	N	4.21	17°27'14.76"N	74° 8'42.55"E
4.	A4	Shahapur Village	SSE	5.43	17°22'35.75"N	74°10'39.75"E
5.	A5	Umbraj Village	NWW	7.07	17°23'52.32" N	74°05'37.30" E
6.	A6	Masur Village	SEE	3.15	17°24'03.52" N	74°09'41.02" E
7.	A7	Varde Village	SSW	6.16	17°22'33.89"N	74° 6'40.40"E
8.	A8	Kharade village	NWW	2.70	17°26'13.55"N	74° 8'6.45"E

Sr.	Sa	mpling Location		M/s. Sa	tyam Petrochem	ical
No		(AAQM)	PM_{10}	$PM_{2.5}$	SO_2	NOx
			ug/m3	ug/m3	ug/m3	ug/m3
1.	A1	Project Site (Near security gate)	82	26	11	17
2.	A2	Nigadi Village	54	18	9	12
3.	A3	Belwadi Village	62	17	6	12
4.	A4	Shahapur Village	64	22	12	17
5.	A5	Umbraj Village	58	19	7	14
6.	A6	Masur Village	68	26	10	15
7.	A7	Varde Village	45	14	7	11
8.	A8	Kharade Village	51	18	8	13
		NAAQ Limits	100	60	80	80

4.2 Noise Quality

Sr.	Sampling Location	M/s. Satyam	Petrochemical
No		Lat	Long
1.	Project Site (Near security gate)	17°25'05.38" N	74°09'03.14" E
2.	Nigadi Village	17°26'27.10" N	74°11'14.41" E
3.	Belwadi Village	17°27'14.66"N	74° 8'42.14"E
4.	Shahapur Village	17°22'35.15"N	74°10'39.24"E
5.	Umbraj Village	17°23′52.22" N	74°05'37.36" E
6.	Masur Village	17°24'03.42" N	74°09'41.48" E
7.	Varde Village	17°22'33.79"N	74° 6'40.32"E
8.	Kharade Village	17°26'13.45"N	74° 8'6.44"E

Sr.	Sampling Location	M/s. Satyam	Petrochemical
No		Noise in dB(A) Leq	Noise in dB (A) Leq
		Day Time	Night Time
1.	Project Site (Near security gate)	69	52
2.	Nigadi village	42	39
3.	Belwadi Village	47	40
4.	Shahapur Village	51	43
5.	Umbraj Village	58	44
6.	Masur Village	53	41
7.	Varde Village	46	39
8.	Kharade village	42	40

- Limit During Day time < 75. (Day time shall mean from 6.00 am to 10.00 pm.)
- Limit During Night time < 70. (Night time shall mean from 10.00 pm to 6.00 am.)

4.3 Water Quality

Sr · N o.	Param eter	Result	N										Unit	IS desir able Limit (As per IS 1050 0) 2012	Metho d
	Locati on	River Water (Krish na River)	Near Indu strial prem ises Cana 1 Wat er	Canal Water-2	Near Belwa di Villag e Canal Water- 3	Near Chika li Villa ge Canal Water - 4	Khar ade Well	Mas ure Villa ge	Vanayc hiwadi Village	Koneg aon Villag e	Shiv de villa ge	Hanbar wadi			
		SW-1	SW-	SW-3	SW-4	SW-5	GW -1	GW -2	GW-3	GW-4	GW -5	GW-6			
		Ch	emical	Parametei	rs			•	Chemical	Paramet	ers				
1	рН	7.78	7.57	7.41	7.2	7.34	7.33	7.46	7.22	7.83	7.26	7.37	-	6.5 - 8.5	APHA 4500 H ⁺ - B
2	Turbidi ty	3.43	1.67	1.22	1.55	1.63	0.69	0.79	0.86	1.58	0.86	1.05	NTU	1	APHA 2130 - B
3	Total	353	144	165	170	200	297	305	345	344	235	264	mg/lit	500	APHA

	Dissol ved Solids														2540 - C
4	Color	<1.00	Agre eabl	Agreeab le	Agree able	Agree able	Agre eabl	Agre eabl	Agreea ble	Agree able	Agre eabl	Agreea ble	$\mathrm{H}^0\mathrm{z}$	5	APHA 2120 - B
5	Dissol ved Oxyge n	5.06	<1.0	<1.00	<1.00	<1.00	<1.0	<1.0	<1.00	<1.00	<1.0	<1.00	mg/lit	_	APHA - 4500- 0-C
6	Odour	Agree able	Agre eabl e	Agreeab le	Agree able	Agree able	Agre eabl e	Agre eabl e	Agreea ble	Agree able	Agre eabl	Agreea ble	-	Agree able	APHA 2150 - B
7	Chlori des as Cl	20.02	15.0 2	17.02	19.02	25.02	14.0	17.0 2	20.02	22.02	12.0	16.02	mg/lit	250	APHA 4500 Cl ⁻ - B
8	Sulpha te as SO ₄	8.65	3.34	6.22	7.8	12.4	5.56	6.21	6.87	8.34	5.11	5.68	mg/lit	200	APHA 4500 SO ₄ ² - E
9	Total Hardne ss as CaCO ₃	100	36	40	48	72	90	110	136	120	64	60	mg/lit	200	APHA 2340 - C
10	Nitrate as NO ₃	1.76	0.32	1.12	1.82	1.63	1.32	1.59	1.37	4.78	1.02	1.78	mg/lit	45	APHA 4500 NO ₃ - B
11	BOD (27° c 3 day)	0.6	ſ	-	-	Í	ſ	ı	-				mg/lit	100	APHA -5210 - B
12	Total Alkalin	50	30	38	40	52	46	60	54	56	32	28	mg/lit	200	APHA -2320-

	ity														В
13	Fluorid e as F	<0.10	<0.1	<0.10	<0.10	<0.10	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10	mg/lit	1	APHA -4500- F - D
14	Sulfide	<0.01	<0.1	< 0.01	< 0.01	< 0.01	<0.0	<0.0	<0.01	< 0.01	<0.0	< 0.01	mg/lit	0.05	IS:302 5-1964
15	Ammo nia	0.56	<0.0 01	<0.10	<0.10	<0.10	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10	mg/lit	0.5	Trived i & Goel
16	Phenol ic compo und	<0.001	<0.0	<0.001	<0.001	<0.00	<0.0 01	<0.0 01	<0.001	<0.001	<0.0	<0.001	mg/lit	0.001	APHA -5530 - C
17	Cyanid e	<0.01	<0.1	<0.01	<0.01	<0.01	<0.0	<0.0	<0.01	<0.01	<0.0	<0.01	mg/lit	0.05	APHA 4500 CN ⁻ - D
18	Anioni c Deterg ents	<0.10	<0.1	<0.10	<0.10	<0.10	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10	mg/lit	0.2	APHA -5540 - C
			Metal	Analysis					Metal	Analysis					
19	Alumi nium as Al	< 0.02	<0.0	<0.02	<0.02	<0.02	<0.0	<0.0	< 0.02	<0.02	<0.0	< 0.02	mg/lit	0.03	APHA 3111 - D
20	Arseni c as As	<0.01	<0.0	<0.01	<0.01	<0.01	<0.0	<0.0	<0.01	<0.01	<0.0	<0.01	mg/lit	0.01	APHA 3114 - B
21	Cadmi um as Cd	<0.003	<0.0	<0.003	<0.003	<0.00	<0.0 03	<0.0 03	<0.003	<0.003	<0.0 03	<0.003	mg/lit	0.003	APHA 3111 - B
22	Calciu	22.44	5.61	4.01	8.1	12.2	28.8	20.0	24.04	35.27	16.8	12.82	mg/lit	75	APHA

	m as Ca						5	4			3				3111 - D
23	Barium as Ba	<0.03	<0.0	<0.03	<0.03	<0.03	<0.0	<0.0	<0.03	<0.03	<0.0	<0.03	mg/lit	0.7	APHA 3111 - D
24	Boron as B	< 0.02	<0.0	< 0.02	< 0.02	<0.02	<0.0	<0.0	< 0.02	< 0.02	<0.0	< 0.02	mg/lit	0.5	APHA 3111 - D
25	Iron as Fe	0.02	<0.0	< 0.02	< 0.02	<0.02	<0.0	<0.0	< 0.02	< 0.02	<0.0	< 0.02	mg/lit	0.3	APHA 3111 - B
26	Molyb denum as Mo	< 0.02	<0.0	< 0.02	< 0.02	<0.02	<0.0	<0.0	< 0.02	< 0.02	<0.0	< 0.02	mg/lit	0.07	APHA 3111 - B
27	Nickel as Ni	< 0.02	<0.0	< 0.02	< 0.02	<0.02	<0.0	<0.0	< 0.02	< 0.02	<0.0	< 0.02	mg/lit	0.02	APHA 3111 - B
28	Silver as Ag	< 0.01	<0.0	<0.01	<0.01	<0.01	<0.0	<0.0	< 0.01	< 0.01	<0.0	< 0.01	mg/lit	0.1	APHA 3111 - B
29	Lead as Pb	<0.01	<0.0	<0.01	<0.01	<0.01	<0.0	<0.0	<0.01	< 0.01	<0.0	<0.01	mg/lit	0.01	APHA 3111 - B
30	Mercur y as Hg	<0.001	<0.0 01	<0.001	<0.001	<0.00	<0.0 01	<0.0 01	<0.001	<0.001	<0.0 01	<0.001	mg/lit	0.001	APHA 3112 - B
31	Magne sium as Mg	10.72	5.36	7.31	6.77	10.13	4.37	14.6 2	18.53	7.78	5.35	6.82	mg/lit	30	APHA 3111 - B
32	Manga nese as Mn	<0.01	<0.0	<0.01	<0.01	<0.01	<0.0	<0.0	<0.01	<0.01	<0.0	<0.01	mg/lit	0.1	APHA 3111 - B

33	Seleniu m as Se	<0.01	<0.0	<0.01	<0.01	<0.01	<0.0	<0.0	<0.01	<0.01	<0.0	<0.01	mg/lit	0.01	APHA 3111 - B
34	Zinc as Zn	0.76	0.23	0.18	0.22	0.29	0.54	0.89	0.46	0.79	0.26	0.55	mg/lit	5	APHA 3111 - B
	Microbi	ological l	Parame	ters			Micro	biologi	cal Paran	neters					
35	Total colifor ms at 37°C for 48 hrs.	1600	220	280	350	350	Abse nt	Abse nt	Absent	47	Abse nt	Absent	Org/1 00ml	Abse nt	APHA -9221- B
36	Faecal colifor ms at 44.5°C for 24hrs.	540	70	94	120	150	Abse nt	Abse nt	Absent	15	Abse nt	Absent	Org/1 00ml	Abse nt	APHA -9221- E

4.4 Soil Quality

Sr.N	Paramet							
0.	ers	Results					Units	Method
	Location	Kharde			Wanyachiwadi	Konegao		
	Location	Village	Masur Village	Project premises	Village	Village		
		S1	S2	S3	S4	S5		
								IS:2720 (PART
1	pН	6.63	7.23	6.32	6.54	6.89	-	26)-1987
	Residual							
2	chlorine	Nil	Nil	Nil	Nil	Nil	mg/kg	Trivedi & Goel
								Analysis by Food
	Chloride							and Agriculture
3	as Cl ⁻	155.15	195.19	215.21	180.18	250.25	mg/kg	Organization
								Analysis by Food
	Sulphate							and Agriculture
4	as SO ₄	265.14	210.18	328.18	344.75	400.5	mg/kg	Organization
	Phosphat							
5	e as P	10.5	6	13	15	18	mg/kg	Trivedi & Goel
	Nitrate as							
6	NO_3	15.62	12.64	16.66	19.45	21.24	mg/kg	Trivedi & Goel
								Analytical
	Nitrite as							Techniques Manual
7	NO_2	7.14	4.34	8.96	10.5	11.6	mg/kg	CPCB
8	Color	Gray	Gray	Brown	Brown	Brown	-	SW 846
								Analytical
	Soil							Techniques Manual
9	texture	Sandy clay	Sandy clay	Sandy clay	clay	Sandyclay	-	CPCB
10	Natural	42	31	38	36	40	%	Analysis by Food

		•			i	ı.		
	moisture							and Agriculture
	content							Organization
	Bulk							IS: 2720 (Part
11	Density	1.12	1.04	0.82	1.35	1.56	g/cm ³	III/Sec 1) - 1980
								Analytical
								Techniques Manual
12	Porosity	21	18	18	24	28	%	СРСВ
	Water							Analytical
	holding							Techniques Manual
13	capacity	42	44	42	45	44	%	CPCB
	Electrical							
	conductiv							
14	ity	50	43	67	64	60	mS/cm	IS:14767:2000
								Procedure for Soil
	Organic							Agriculture
15	matter	3.77	3.77	1.99	1.84	1.72	%	Organization
								Analysis by Food
	Calcium							and Agriculture
16	as Ca ⁺⁺	348.69	400.8	336.67	392	354	mg/kg	Organization
	Total						8 8	Analytical
	Nitrogen							Techniques Manual
17	as N	19.88	26.6	18.2	25.08	28.22	mg/kg	CPCB
	Grain size							Analytical
	distributi							Techniques Manual
18	on							CPCB
	Gravel	26	16	26	15	15	%	
	Sand	20	24	2700	25	30	%	
	Silt	16	17	14	20	20	%	
	+					1	†	
	Clay	38	43	33	40	40	%	
10	Arsenic	.1.00	.1.00	.1.00	.1.00	.1.00	/1	EDA 2050 D 5000
19	as As	<1.00	<1.00	<1.00	<1.00	<1.00	mg/kg	EPA 3050 – B 7000

EXECUTIVE SUMMARY

	Cadmium							
20	as Cd	<1.00	< 1.00	<1.00	<1.00	<1.00	mg/kg	EPA 3050 – B 7000
	Chromiu							
21	m as Cr	<1.00	<1.00	<1.00	<1.00	<1.00	mg/kg	EPA 3050 – B 7000
	Copper as							
22	Cu	48	46	20	30	26	mg/kg	EPA 3050 – B 7000
23	Iron as Fe	8000	7400	10400	9600	10000	mg/kg	EPA 3050 – B 7000
	Lead as							
24	Pb	<1.00	<1.00	<1.00	<1.00	<1.00	mg/kg	EPA 3050 – B 7000
	Mangane							
25	se as Mn	140	210	160	180	172	mg/kg	EPA 3050 – B 7000
	Magnesiu							
26	m as Mg	2400	3620	3340	4000	3800	mg/kg	EPA 3050 – B 7000
1	Mercury		4.00				_	
27	as Hg	<1.00	<1.00	<1.00	<1.00	<1.00	mg/kg	EPA 3050 – B 7000
20	Nickel as	1.00	1.00	1.00	1.00	1.00	//	ED 4 2050 B 5000
28	Ni	<1.00	<1.00	<1.00	<1.00	<1.00	mg/kg	EPA 3050 – B 7000
20	Sodium	7200	0000	0.400	7000	0200	/1	EDA 2050 D 7000
29	as Na	7200	8800	8400	7900	8200	mg/kg	EPA 3050 – B 7000
20	Zinc as	80	C 0	16	2.4	20	/1	EDA 2050 D 7000
30	Zn	80	68	16	34	38	mg/kg	EPA 3050 – B 7000
31	Cobalt as Co	<1.00	<1.00	<1.00	<1.00	<1.00	ma/lza	EPA 3050 – B 7000
31	Potassiu	<1.00	<1.00	<1.00	<1.00	<1.00	mg/kg	EFA 3030 - B 7000
32	m as K	566	420	560	612	590	ma/ka	EPA 3050 – B 7000
32	m as ix	300	420	300	012	390	mg/kg	E1 A 3030 - B 7000

4.6 Ecology:

There are no ecologically sensitive receptors or endangered species within the 10 kms of the study area. No clustered green belt is found in the near vicinity, hence there will not be any kind of deforestation. No rare or endangered species of flora and fauna are present in the immediate vicinity as well as the study area. Thus, there will not be any adverse negative impact on flora and fauna.

4.7 Socio-economic:

The project will provide positive impact on the economic development of the region in terms of employment opportunities. The above unit is already established in Wayanchiwadi village. Therefore no population displacement is envisaged.

5. PREDICTION OF IMPACTS AND ITS MITIGATION:

Sr.No	Environmental Parameters	Impact Attributes	Mitigation Measures
1.	Air Quality	Unreacted Gases from Manufacturing process, Emission from Utilities & Fugitive emission (dust) from loading and unloading activities, also from transportation.	provided. Distillation columns to control unreacted gases, VOCs etc. Cyclone dust collector to control SPM and adequate stack height as per the CPCB norms.
2.	Noise Quality	D.G sets, Boilers & reactors	
3.	Water Quality	Process water	Full fledge ETP to maintain zero discharge.
4.	Solid Waste Management	Hazardous waste from ETP and distillation residue	Disposed through CHWTSDF (Ranjangaon)

6. RISK ASSESSMENT PLAN

Risks likely to pose a risk to man, environment or property associated with various activities are addressed in this report. Such activities include transport, storage; handling and usage of fuels All equipment vulnerable to explosion or fire would be designed to relevant IS codes and statutory regulations.

The Action plan preparedness depends largely on results of risk assessment data and includes,

- Plan for preventive as well as predictive maintenance
- Augment facilities for safety, fire fighting, medical (Both equipment and manpower) as per requirement of risk analysis.
- Evolve emergency handling procedure both onsite and offsite.
- Practice mock drill for ascertaining preparedness for tackling hazards/emergencies at any time of the day.

7. DISASTER MANAGEMENT PLAN

During operational phase surrounding population shall be made aware of safety precautions to be taken in case of any mishap in plant. On-site disaster management and off-site emergency plans, commands communication and controls will be established and maintained. Adequate provisions like emergency response, response organization, response plan, material safety data sheet, command and control, capabilities, transportation, medical facilities, mitigation measures, training, education, public awareness emergency plan review etc. to control any disaster situation will be made available.

Specification & marking of safe area- assembly point to gather in emergency. Minimum two numbers of gates to escape during disaster shall be provided. Provision of adequate access ways for movement of equipment and personnel shall be kept. Fuel oil storage shall be in protected and fenced area. The tank will be housed in a dyke wall. As per regulations of CCOE its testing & certification will be performed each 1 year regularly and all record will be kept properly.

8. CSR ACTIVITIES

As a part of CSR activity distributing of note books in the wayanchiwadi school. M/s Satyam Petrochemicals regularly carry out CSR activities in interval for the development of the surrounding villages.

9. CONCLUSION

The existing project is in operation from 2005 with valid CTP and EC. the proponent has decided to enhance the existing activity with addition of Di acetone alcohol. The full fledge effluent treatment plant is available to maintain the zero discharge, the solid waste which is generating is disposed through common facility and the non hazardous waste which is generating in form of ash is given to the brick manufactures, the same practice will be continued for the expansion activity. The proper mitigation will be adopted for the identified impacts.